Interaction Between Fast Ions and Microturbulence in Thermonuclear Devices: Theory and Modelling
نویسنده
چکیده
The work carried out in this thesis focuses on the interaction between fast ions and turbulence. The aim of the project is to explore this phenomenon and develop the numerical framework required for investigations on present day machines and predictions for burning plasmas. The analysis of the background plasma turbulence and the resulting fast ion diffusivities is carried out with the gyrokinetic code GENE. A set of kinetic transport quantities are defined in order to discriminate the transport of ions with different energies. Gyroaveraging effects are studied. It is observed that only at large values of the E/Te ratio is the particle transport efficiently suppressed (E is the energy of a fast particle and Te the electron temperature). For smaller values, E/Te < 15, larger fast ion transport is observed due to resonant interactions between the particle motion and the phase velocity of the underlying turbulent waves. The transport of fusion generated alpha particles induced by electrostatic fluctuations is lower than collisional expectations, due to their large energies. Magnetic turbulence has an even smaller effect. To verify whether similar conclusions can be drawn for neutral beam ions, substantial upgrades to the VENUS code have been implemented. The results of numerical simulations of the beam ion transport in ITER, DEMO and TCV, with the inclusion of collisional and turbulent effects, are discussed. It is demonstrated that the transport of the 1 MeV ions generated by the neutral beam injector of ITER is only marginally affected by microturbulence and it is concluded that fast ion confinement is not compromised. Given the large plasma temperatures foreseen for DEMO, anomalous transport of beam ions is significant, and in particular collisional models fail to estimate the correct heat deposited on the ions and the electrons. Given the low energy of the planned TCV NBI injector, even stronger anomalies are expected. The effect, however, can be regulated with auxiliary ECRH heating, which would allow for new studies of the fast ion turbulent transport. keywords: plasma physics, gyrokinetics, microturbulence, fast ions, anomalous transport, ITER, DEMO, TEXTOR, TCV, neutral beam injection, alpha particles
منابع مشابه
Microturbulence driven transport of energetic ions in the ITER steady-state scenario
Modelling of microturbulence-driven transport of energetic ions in an ITER steady-state scenario is presented. Results indicate that a significant fraction of the velocity space distribution of alpha particles and deuterium ions can be transported above neoclassical predictions. Turbulent magnetic fluctuations are found to significantly enhance the fast ion diffusivity. Overall, the conclusion ...
متن کاملEvidence for fast-ion transport by microturbulence.
Cross-field diffusion of energetic ions by microturbulence is measured during neutral-beam injection into the DIII-D tokamak. Fast-ion D(alpha), neutron, and motional Stark effect measurements diagnose the fast-ion distribution function. As expected for transport by plasma turbulence, anomalies relative to the classical prediction are greatest in high temperature plasmas, at low fast-ion energy...
متن کاملSelective Binding of Cyclic Nanopeptide with Halides and Ion Pairs; a DFT-D3 Study
In this article, theoretical studies on the selective complexation of the halide ions (F¯, Cl¯ and Br¯) and ion pairs (Na+F¯, Na+Cl¯ and Na+Br¯) with the cyclic nano-hexapeptide (CP) composed of L-proline have been performed in the gas phase. In order to calculate the dispersion interaction energies of the CP and ions, DFT-D3 calculations at the M05-2X-D3/6-31G(d) level was employed. Based on t...
متن کاملNonlinear stabilization of tokamak microturbulence by fast ions.
Nonlinear electromagnetic stabilization by suprathermal pressure gradients found in specific regimes is shown to be a key factor in reducing tokamak microturbulence, augmenting significantly the thermal pressure electromagnetic stabilization. Based on nonlinear gyrokinetic simulations investigating a set of ion heat transport experiments on the JET tokamak, described by Mantica et al. [Phys. Re...
متن کاملA New Approach for Numerical Analysis of the RC Shear Walls Based on Timoshenko Beam Theory Combined with Bar-Concrete Interaction
In this paper, a new approach for nonlinear numerical modelling of the reinforced concrete shear walls with consideration of bar-concrete interaction and shear deformation is proposed. Bar and concrete stress-strain relations, the bar-concrete interaction, the shear stress-strain relation and, also, their cyclic behavior including the strength degradation and stiffness degradation are adopted a...
متن کامل